EgoCap: Egocentric Marker-less Motion Capture with Two Fisheye Cameras

EgoCap: Egocentric Marker-less Motion Capture with Two Fisheye Cameras

Abstract

Marker-based and marker-less optical skeletal motion-capture methods use an outside-in arrangement of cameras placed around a scene, with viewpoints converging on the center. They often create discomfort with marker suits, and their recording volume is severely restricted and often constrained to indoor scenes with controlled backgrounds. Alternative suit-based systems use several inertial measurement units or an exoskeleton to capture motion with an inside-in setup, i.e. without external sensors. This makes capture independent of a confined volume, but requires substantial, often constraining, and hard to set up body instrumentation. Therefore, we propose a new method for real-time, marker-less, and egocentric motion capture: estimating the full-body skeleton pose from a lightweight stereo pair of fisheye cameras attached to a helmet or virtual reality headset – an optical inside-in method, so to speak. This allows full-body motion capture in general indoor and outdoor scenes, including crowded scenes with many people nearby, which enables reconstruction in larger-scale activities. Our approach combines the strength of a new generative pose estimation framework for fisheye views with a ConvNet-based body-part detector trained on a large new dataset. It is particularly useful in virtual reality to freely roam and interact, while seeing the fully motion-captured virtual body.

Date