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Motivation Learning Shape and Pose from 2D Experiments
We live in a three-dimensional world and perceive it mainly via its two-dimensional
projections. Based on these projections, we are able to infer the three-dimensional shapes Poit clout e We evaluate our method on the 3 shape categories (chairs, cars, airplanes) of the ShapeNet dataset [4]
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and poses of the surrounding objects. Is it possible to design a learning system that perceives 5 projection projection e We render 5 views of each model (random camera azimuth and elevation, sampled from [0°, 360°) and |—20°, 40°))
3D from observing only two-dimensional projections? . o 055 . | | |
|-t o| —, | Difterentiable | e We use Chamfer Distance as an evaluation metric for shape reconstruction:
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Contributions: e Training data: a dataset D of views of K objects, with m, views available for the i-th e To evaluate pose estimation we report the accuracy (at a 30° threshold) and the median error (in degrees)
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e A system that predicts a detailed 3D shape from a single view of an object object: ) = U; 1{< Ljs P > g Resolution 37 R enlution 6 Resoltion 108 Shape (Do) Pose (Accuracy & Median error)
. . . . . . . DRC [1] PTN [4] Ours-V Ours OursV Ours EPCG [5] O “basi basi
e Itlearns only from 2D projections and with unknown camera poses e Inputs: two images of the same object at different viewpoints: x; and - ] 4] OursV Ours OursV Ours 5] Ours MVC6] Ours-basic Ours  GT pose [6] MVC[6] Ours-basic  Ours
. a . Airplane 835  3.79 557 452 494 350 403 2.84 Airplane  4.43 722 391 0.79 10.7 0.69 14.3 0.20 100.2 0.75 8.2
e Differentiable rendering of point clouds that enables learning from 2D projections e We train a deep neural network [ to predict: Car 4.35 394 388 422 341 298 369 242 Car 8.43 414 391 090 74 08752 049 428 0.82 74
A Chair 8.01 5.100 557 510 480 415 562  3.62 Chair 6.51 479 430 0.85 112 081 7.8 0.50 31.3 0.86 8.1
e An ensemble of pose estimators that overcomes pose ambiguity - the 3D shape (as a point cloud) from the first image: P, = Fp(x1, 0p) Mean 690 497 501 461 439 355 445 2.96 Mean 546 =33 404 085 100 070 90 040 581 08l 7.9
- the camera pose (a quaternion of rotation) from the second image: ¢; = F(z2, 0c) Table 1: Shape prediction accuracy for the exper- Table 2: Shape and pose prediction accuracy. Ours-basic is our
. . . . . . 5 . iments with known camera pose. model with a single pose regressor.
e Compute 2D projection using Differentiable Point Cloud Renderer: p; s = m( P, o) P S 5
e Minimize reconstruction error between the computed projection and the ground truth: Qualitative Results
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2.  Apply the projective transtformation to the points in the point cloud: x; = 1 x; \ E i
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3. Represent each point as a Gaussian density function to enable gradient tlow: m g H sl 3 R | L
N . Our ensemble of pose regressors is designed to re-  Pose predictions by the ensem- ; - cod Model
o _ NI —1 / solve camera pose ambiguity. ble of regressors. lowards Part-based Models
o(x) = lip(} £(x) 0.1 () = exexp (5 = xS x - %) pose ambiguity :
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| o | | e Instead of a single pose regressor F.(-, f.), we introduce an ensemble of K pose regres- Input image | =
e (Covariance 2.; can be a fixed isotropic or learned per point sors FF(-, 0%
e Th ncy function o(X) is discretized in two steps: _—
e occupancy function o(x) is discretized in two steps e Fach regressor learns to specialize on a subset of poses and together they cover the Fived G | ‘
- Put the points on a grid with trilinear interpolation using tf.scatter_nd op whole range 1Xed 1sotropic Gaussian -
- Apply convolution with the kernel to the volum . . 1
pply convolutio th the kernel to the volume e We train the system with the “hindsight” loss [2]:
4. Compute ray termination probabilities r from the occupancies o, similar to [1]: ' ' ‘ Learn full covariance . }

Ly(0p,0%,...,0%) = min L(0p,0").
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e In parallel we train a single regressor by using the best

u=1 u=1
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