

Motivation

We live in a three-dimensional world and perceive it mainly via its two-dimensional projections. Based on these projections, we are able to infer the three-dimensional shapes and poses of the surrounding objects. Is it possible to design a learning system that perceives 3D from observing only two-dimensional projections?

Contributions:

- A system that predicts a detailed 3D shape from a single view of an object
- It learns only from **2D projections** and with **unknown camera poses**
- **Differentiable rendering of point clouds** that enables learning from 2D projections
- An ensemble of pose estimators that overcomes pose ambiguity

Differentiable Point Cloud Rendering

- 1. Inputs: a point cloud $P = \{ \langle \mathbf{x}_i, \mathbf{s}_i, \mathbf{y}_i \rangle \}_{i=1}^N$ and a camera pose c
- 2. Apply the projective transformation to the points in the point cloud: $\mathbf{x}'_i = T_c \mathbf{x}_i$
 - Transform T_c includes extrinsic c and intrinsic camera parameters
- 3. Represent each point as a Gaussian density function to enable gradient flow:

$$o(\mathbf{x}) = \operatorname{clip}(\sum_{i=1}^{N} f_i(\mathbf{x}), [0, 1]) \qquad f_i(\mathbf{x}) = c_i \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}'_i)^T \Sigma_i^{-1}(\mathbf{x} - \mathbf{x}'_i)\right)$$

- Covariance Σ_i can be a fixed isotropic or learned per point
- The occupancy function $o(\mathbf{x})$ is discretized in two steps:
 - Put the points on a grid with trilinear interpolation using **tf.scatter_nd** op - Apply convolution with the kernel to the volume
- 4. Compute ray termination probabilities *r* from the occupancies *o*, similar to [1]:

$$r_{k_1,k_2,k_3} = o_{k_1,k_2,k_3} \prod_{u=1}^{k_3-1} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,D_3+1} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,u}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,\dots} = \prod_{u=1}^{D_3} (1 - o_{k_1,k_2,\dots}) \quad if \quad k_3 \leqslant D_3, \quad r_{k_1,k_2,\dots} = \prod_{u=1}^{D_3} (1 -$$

5. Finally, project the volume to the plane:

$$p_{k_1,k_2} = \sum_{k_3=1}^{D_3+1} r_{k_1,k_2,k_3} y_{k_1,k_2,k_3}.$$

Unsupervised Learning of Shape and Pose with Differentiable Point Clouds Eldar Insafutdinov¹ and Alexey Dosovitskiy²

¹Max Planck Institute for Informatics ²Intel Labs

Learning Shape and Pose from 2D

- Training data: a dataset D of views of K objects, with m_i views available for the *i*-th object: $D = \bigcup_{i=1}^{K} \{ \langle x_j^i, \mathbf{p}_j^i \rangle \}_{j=1}^{m_i}$
- Inputs: two images of the same object at different viewpoints: x_1 and x_2
- We train a deep neural network *F* to predict:
 - the 3D shape (as a point cloud) from the first image:
 - the camera pose (a quaternion of rotation) from the second image: $\hat{c}_2 = F_c(x_2, \theta_c)$
- Compute 2D projection using Differentiable Point Cloud Renderer: $\hat{\mathbf{p}}_{1,2} = \pi(\hat{P}_1, \hat{c}_2)$
- Minimize reconstruction error between the computed projection and the ground truth:

$$\mathcal{L}(heta_P, heta_c) = \sum_{i=1}^N \sum_{j_1,j_2=1}^{m_i} \left\| \hat{\mathbf{p}}_{j_1,j_2}^i - \mathbf{p}_{j_1,j_2}^i - \mathbf{p}_{j_1,j_2}^i - \mathbf{p}_{j_1,j_2}^i \right\|$$

Ensemble of Camera Pose Predictors

Our ensemble of pose regressors is designed to resolve camera pose ambiguity.

- Instead of a single pose regressor $F_c(\cdot, \theta_c)$, we introduce an ensemble of K pose regressors $F_c^k(\cdot, \theta_c^k)$
- Each regressor learns to specialize on a subset of poses and together they cover the whole range
- We train the system with the "hindsight" loss [2]:

$$\mathcal{L}_h(\theta_P, \theta_c^1, \dots, \theta_c^K) = \min_{k \in [1,K]} \mathcal{L}(\theta_P, \theta_c^k).$$

- In parallel we train a single regressor by using the best model from the ensemble as the teacher
- The loss for training the student is an angular difference between two quaternions of rotation:

$$L(q_1, q_2) = 1 - \operatorname{Re}(q_1 q_2^{-1} / \| q_1 q_2^{-1} \|)$$

 $- o_{k_1,k_2,u}).$

$$\hat{P}_1 = F_P(x_1, \theta_P)$$

Pose predictions by the ensemble of regressors.

Pose ambiguity: segmentation masks used for supervision look very similar from different camera views.

- We use Chamfer Distance as an evaluation metric for shape reconstruction:

	Resolution 32				Resolut	tion 64	Resolutio	on 128		Shape (D_{Chamf})			Pose (Accuracy & Median error)				
	DRC [1]	PTN [4]	Ours-V	Ours	Ours-V	Ours	EPCG [5] Ours		MVC [6]	Ours-basi	c Ours	GT po	ose [6]	MVC [6]	Ours-basic	Ours
Airplane	8.35	3.79	5.57	4.52	4.94	3.50	4.03	2.84	Airplane	4.43	7.22	3.91	0.79	10.7	0.69 14.3	0.20 100.2	0.75 8.2
Car	4.35	3.94	3.88	4.22	3.41	2.98	3.69	2.42	Car	8.43	4.14	3.91	0.90	7.4	0.87 5.2	0.49 42.8	$0.82 \ 7.4$
Chair	8.01	5.10	5.57	5.10	4.80	4.15	5.62	3.62	Chair	6.51	4.79	4.30	0.85	11.2	0.81 7.8	0.50 31.3	0.86 8.1
Mean	6.90	4.27	5.01	4.61	4.39	3.55	4.45	2.96	Mean	6.46	5.38	4.04	0.85	10.0	0.79 9.0	0.40 58.1	0.81 7 .9

Table 1: Shape prediction accuracy for the exper iments with known camera pose.

Experiments

• We evaluate our method on the 3 shape categories (chairs, cars, airplanes) of the ShapeNet dataset [4] • We render 5 views of each model (random camera azimuth and elevation, sampled from $[0^{\circ}, 360^{\circ})$ and $[-20^{\circ}, 40^{\circ}]$)

$d_{Chamf}(P^{gt}, P^{pred}) = \frac{1}{|P^{pr}|} \sum_{\mathbf{x}^{pr} \in P^{pr}} \min_{\mathbf{x} \in P^{gt}} \|\mathbf{x}^{pr} - \mathbf{x}\|_{2} + \frac{1}{|P^{gt}|} \sum_{\mathbf{x}^{gt} \in P^{gt}} \min_{\mathbf{x} \in P^{pr}} \|\mathbf{x}^{gt} - \mathbf{x}\|_{2}$

• To evaluate pose estimation we report the accuracy (at a 30° threshold) and the median error (in degrees)

Table 2: Shape and pose prediction accuracy. Ours-basic is our

 model with a single pose regressor.

Towards Part-based Models Input image Fixed isotropic Gaussian Learn full covariance

Qualitative Results

References

[1] S. Tulsiani et al. "Multi-view supervision for single-view reconstruction via differentiable ray consistency" in CVPR, 2017. [2] A. Guzmán-rivera et al. "Multiple Choice Learning: Learning to Produce Multiple Structured Outputs" in NIPS, 2012. [4] X. Yan et al.. "Perspective transformer nets: Learning single-view 3D object reconstruction without 3D supervision" in NIPS, 2016. [5] C.-H. Lin et al. Learning efficient point cloud generation for dense 3D object reconstruction" in AAAI, 2018. [6] S. Tulsiani et al. "Multi-view consistency as supervisory signal for learning shape and pose prediction" in CVPR, 2018.