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Motivation
We live in a three-dimensional world and perceive it mainly via its two-dimensional

projections. Based on these projections, we are able to infer the three-dimensional shapes
andposes of the surrounding objects. Is it possible to design a learning system that perceives
3D from observing only two-dimensional projections?

Contributions:

• A system that predicts a detailed 3D shape from a single view of an object

• It learns only from 2D projections and with unknown camera poses

• Differentiable rendering of point clouds that enables learning from 2D projections

• An ensemble of pose estimators that overcomes pose ambiguity

Code available!
https://eldar.github.io/PointClouds
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1. Inputs: a point cloud P = {〈xi, si,yi〉}Ni=1 and a camera pose c
2. Apply the projective transformation to the points in the point cloud: x′i = Tcxi

• Transform Tc includes extrinsic c and intrinsic camera parameters

3. Represent each point as a Gaussian density function to enable gradient flow:

o(x) = clip(
N∑
i=1

fi(x), [0, 1]) fi(x) = ci exp

(
−1

2
(x− x′i)

TΣ−1
i (x− x′i)

)
• Covariance Σi can be a fixed isotropic or learned per point
• The occupancy function o(x) is discretized in two steps:

- Put the points on a grid with trilinear interpolation using tf.scatter_nd op
- Apply convolution with the kernel to the volume

4. Compute ray termination probabilities r from the occupancies o, similar to [1]:

rk1,k2,k3
= ok1,k2,k3

k3−1∏
u=1

(1− ok1,k2,u) if k3 6 D3, rk1,k2,D3+1 =
D3∏
u=1

(1− ok1,k2,u).

5. Finally, project the volume to the plane:

pk1,k2
=

D3+1∑
k3=1

rk1,k2,k3
yk1,k2,k3

.

Learning Shape and Pose from 2D
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• Training data: a dataset D of views of K objects, with mi views available for the i-th
object: D = ∪Ki=1{

〈
xij,p

i
j

〉
}mi

j=1

• Inputs: two images of the same object at different viewpoints: x1 and x2

• We train a deep neural network F to predict:

- the 3D shape (as a point cloud) from the first image: P̂1 = FP(x1, θP)

- the camera pose (a quaternion of rotation) from the second image: ĉ2 = Fc(x2, θc)

• Compute 2D projection using Differentiable Point Cloud Renderer: p̂1,2 = π(P̂1, ĉ2)

• Minimize reconstruction error between the computed projection and the ground truth:

L(θP , θc) =
N∑
i=1

mi∑
j1,j2=1

∥∥∥p̂ij1,j2
− pij2

∥∥∥2
.
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Our ensemble of pose regressors is designed to re-
solve camera pose ambiguity.

Pose predictions by the ensem-
ble of regressors.

• Instead of a single pose regressor Fc(·, θc), we introduce an ensemble ofK pose regres-
sors F k

c (·, θkc )
• Each regressor learns to specialize on a subset of poses and together they cover the

whole range
• We train the system with the “hindsight” loss [2]:

Lh(θP , θ1
c, . . . , θ

K
c ) = min

k∈[1,K]
L(θP , θ

k
c ).

• In parallel we train a single regressor by using the best
model from the ensemble as the teacher

• The loss for training the student is an angular differ-
ence between two quaternions of rotation:

L(q1, q2) = 1− Re(q1q
−1
2 /

∥∥q1q
−1
2

∥∥)

Pose ambiguity: segmen-
tation masks used for su-
pervision look very simi-
lar from different camera
views.

Experiments

• We evaluate our method on the 3 shape categories (chairs, cars, airplanes) of the ShapeNet dataset [4]
• We render 5 views of each model (random camera azimuth and elevation, sampled from [0◦, 360◦) and [−20◦, 40◦])
• We use Chamfer Distance as an evaluation metric for shape reconstruction:

dChamf(P
gt, P pred) =

1

|P pr|
∑

xpr∈P pr

min
x∈P gt

‖xpr − x‖2 +
1

|P gt|
∑

xgt∈P gt

min
x∈P pr

∥∥xgt − x
∥∥

2

• To evaluate pose estimation we report the accuracy (at a 30◦ threshold) and the median error (in degrees)

Resolution 32 Resolution 64 Resolution 128
DRC [1] PTN [4] Ours-V Ours Ours-V Ours EPCG [5] Ours

Airplane 8.35 3.79 5.57 4.52 4.94 3.50 4.03 2.84
Car 4.35 3.94 3.88 4.22 3.41 2.98 3.69 2.42
Chair 8.01 5.10 5.57 5.10 4.80 4.15 5.62 3.62

Mean 6.90 4.27 5.01 4.61 4.39 3.55 4.45 2.96

Shape (DChamf) Pose (Accuracy & Median error)
MVC [6] Ours-basic Ours GT pose [6] MVC [6] Ours-basic Ours

Airplane 4.43 7.22 3.91 0.79 10.7 0.69 14.3 0.20 100.2 0.75 8.2
Car 8.43 4.14 3.91 0.90 7.4 0.87 5.2 0.49 42.8 0.82 7.4
Chair 6.51 4.79 4.30 0.85 11.2 0.81 7.8 0.50 31.3 0.86 8.1

Mean 6.46 5.38 4.04 0.85 10.0 0.79 9.0 0.40 58.1 0.81 7.9

Table 1: Shape prediction accuracy for the exper-
iments with known camera pose.

Table 2: Shape and pose prediction accuracy. Ours-basic is our
model with a single pose regressor.
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